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Abstract. Based on the corrected sum rules and generalized virial identities, we derive an expression for
all modes of excitation spectrum of interacting Bose gases at finite atom numbers in axially anisotropic
potentials, in terms of the N-body ground state average. Using the variational Gaussian calculation for
the ground-state wave function, its explicit analytic formulas are obtained. These results show clearly
the dependence of excitation spectrum on the interaction strength parameter p =

√
2/π(asc/aho)(N −

1) and trap geometry parameter λ for the system with N = 1 through N → ∞. For λ = 0 and 1
the dependences have simple and intuitive physical interpretations. We compare the low-lying excitation
spectra with the existing numerical results and make quantitative predications for future experiments and
numerical simulation for higher-lying excitation modes.

PACS. 67.40.Db Quantum statistical theory; ground state, elementary excitations – 67.90.+z Other topics
in quantum fluids and solids; liquid and solid helium

1 Introduction

Theoretical studies on quantum system show that a com-
bination of microscopic and macroscopic approaches is
needed essentially. Experimental studies on Bose-Einstein
condensate (BEC) [1] are concentrated in the quantum
system of interacting Bose gases in external potentials.
For the interatomic interaction in a simple delta-function
form, the many-body quantum problem is interesting but
complicated. Without external potentials, the problem
was solved exactly by use of Bethe ansatz [2] in the one-
dimensional (1D) cases; while in the 2D cases the problem
became complex and was solved exactly [3]. In the cases
with external potentials, however, since the Hamiltonian
has off-diagonal terms and the momentum is not a con-
served quantity, it is impossible up to now to treat this
problem exactly. In some special cases, such as in the
Thomas-Fermi limit of atom number N → ∞, the non-
linear Schrödinger equation was solved exactly by [4] with
spherical trap and by [5,6] with axial trap. The shift of
the elementary excitation spectrum (EES) has been stud-
ied in [7,8] due to the chemical potential change, kinetic
energy effect, and finite oscillation amplitude. In the op-
posite case for the weak interacting limit, the EES has also
been calculated [9]. In the case of finite N, the analytic ex-
pressions for the EES only included three eigenmodes [10].
In that case for some lower excited states, the most suc-
cessful microscopic approaches have been found to be the
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selfconsistent numerical calculations [11–16]. These meth-
ods give very detailed, but purely numerical, description
of the EES. Alternatively, to gain a better physical insight,
macroscopic approaches have been studied [4,17,18]. The
approaches of energy-weighted sum rules and moment-
weighted virial identities provide a rigorous and powerful
tool to connect the microscopic interactions and macro-
scopic properties of the EES for some collective excitation
modes. Simple and closed expression for low-lying modes
of the EES are given, that allow for their evaluation from
the ground-state wave function.

The usual sum rule is the most popular sum rule and
has been the object of many theoretical investigations in
the past in atomic physics, quantum mechanics, quantum
liquid, superfluidity and nuclear physics [19]. If the spec-
tral density of the response function corresponding to the
excitation operator is a delta function, then the sum rule
determines exactly the excited energy level. In practice the
spectral density is localized about one energy level it only
gives the average energy of the collective excitations. Usu-
ally the sum-rule approaches can be able to give true re-
sults for the EES in a few of lowest excited modes. While in
the higher excited modes it gives an uncertain prediction
since the spectral density becomes smooth. If the spectral
densities have sharp peaks but one doesn’t know where
the peak positions are at, then the approaches are useless.
For example, in a 1D single-body quantum system with
harmonic potential, the usual sum rule becomes invalid for
most excited states with various choices of the forms of ex-
citation operator. The corrected sum rule [18] solves this
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problem very well with a generalized form of excitation
operator. In evaluating the sum rule, we need to calculate
the moment-weighted expectation values associated with
the system Hamiltonian. Especially the two-fold calcula-
tion associated with the interaction energy is very difficult.
The usual virial identity only gives the expectation-value
relation between kinetic energy, potential energy and in-
teraction energy; while the generalized virial identity [18]
may give the moment-weighted expectation-value relation
among them.

In this paper, we study the corrected sum rule and
generalized virial identity in more detail, and apply them
to the entire EES of interacting gases of finite bosons in
harmonic potentials. The choice of excitation operator de-
termines the mode being excited. The evaluations of the
sum rules associated with the terms of kinetic energy and
interaction energy dependent strong on the interaction
strength for almost all excitation modes. We extend the
usual sum rule in some low-lying modes to all modes by
correcting the cubic energy-weighted sum rule. The corre-
sponding terms in the sum rules include two parameters:
the relative shift associated with the kinetic energy and en-
hancement factor associated with the interaction energy.
In the special case of N = 1, the EES has the exact result
after the shift correction. In the opposite case of N → ∞,
the approximate analytic result is as a boundary condi-
tion. The controlling of asymptotic behavior determines
uniquely the relative shift and enhancement factor, and
the corrected sum rule estimate has the reasonable results
for all modes in the whole regime of N . The contribution
of the interaction energy to the cubic energy-weighted sum
rules in two-fold integral expression is equal to the contri-
bution of the kinetic and external field energies in one-fold
integral expressions. The goal of this work is to obtain the
analytic expression for the entire modes of the EES of in-
teracting gases at finite trapped atom numbers, and get
the explicit analytic formulas using the Gaussian variation
calculation for the N -body ground-state wave function of
the condensate.

This paper is organized as following. In Section 2 we
present the theoretical framework at finite trapped atom
numbers, deduce the general expression for the sum rules
and emphasize the necessity both for the correction on
the usual sum rules and for the generalization of the usual
virial identity for the entire EES. In Section 3 we derive
the analytic expressions for the EES with three symmetric
harmonic-oscillator potentials, and give the explicit ana-
lytic expressions for the EES by the variational method
for the N -body ground-state wave function. Conclusion is
in Section 4.

2 Theory descriptions

For a N -body interacting Bose condensed gas in a 3D ex-
ternal harmonic potential U(r) = Mω2

⊥(s2 + λ2z2)/2, we
assume a two-body interatomic interaction of the form
V (r) = gδ(r) with the coupling constant g = 4π�

2asc/M
fixed by the s-wave scatting length asc. Where M is the
atom mass, ω⊥ is the harmonic oscillator frequency in the

xy-plane, and λ is the frequency ratio of the z-axis to
the xy-plane in case of the axially symmetric trap with
s2 = x2 +y2. The system Hamiltonian can be described as

Ĥ =
N∑

i=1

(−�
2

2M
∇2

i + U(ri)
)

+
N∑

i<j

gδ(ri − rj). (1)

Let |N〉0 be its ground state at energy E0 and |N〉n be
its nth excited state at energy En, the elementary exci-
tation energies are �ωn = En − E0. Where the quantum
numbers n represent the excitation modes of the EES.

For finding analytic expression for ωn as a function
of atom number N , interaction strength g and the trap
geometry parameter λ for any excitation modes, one of the
best approaches is the sum rule [18,19]. In this section we
use n for general quantum numbers to identify the set of
excitation modes in the entire excited states. The energy-
weighted sum rule, S1, and cubic energy-weighted sum
rule, S3, are defined as

Sk =
∞∑

n=0

∣∣∣
0

〈
N

∣∣∣F̂
∣∣∣ N

〉
n

∣∣∣2(�ωn)k, (k = 1, 3) (2)

with a collective excitation operator F̂ =
∑N

i=1 f(ri) for
the N -body system. The one-body operator f = f(ri) can
be either a multipole or a plane wave operator depending
on the physical problem under consideration. For exciting
a general set of modes, the choice of the form f depends on
the potential symmetry and corresponding quantum num-
bers. By defining operator Ĝ through commutator Ĝ =
−(2M/�

2)[Ĥ, F̂ ], one has Ĝ =
∑N

i=1{(∇2f) + 2(∇f) · ∇}
due to the contribution only from the kinetic energy
term of the Hamiltonian. It is shown that S1 is model
independent

S1 =
−�

2

2M

〈[
F̂+, Ĝ

]〉
0

=
�

2

2M

〈
|∇f |2

〉
0
, (3)

and that S3 is in terms of a double commutator involving
the system Hamiltonian

S3 =
�

4

2M2

〈[
1
2
Ĝ+,

[
1
2
Ĝ, Ĥ

]]〉
0

. (4)

Where the average 〈...〉0 ≡ 0〈N |...|N〉0 is taken on the
N -body ground state |N〉0 with a N -fold integral in real
space and runs over all atoms for summation in the dis-
crete form. Since the density Hamiltonian (1) contains
three energy terms, potential energy U , interaction en-
ergy V , and kinetic energy T , S3 in equation (4) consists
with the corresponding three parts, S3 = SU + SV + ST .
U and V ’s contributions to S3 take the same form

SU =
�

4

2M2
〈(∇f∗) · (∇{(∇f) · (∇U)})〉0, (5)

and SV = (�4/2M2)〈(∇f∗) · (∇{(∇f) · (∇V )})〉′0 be-
cause U and V are only as a function of the displacement
in real space r. Where the average 〈...〉′0 = 0〈N |...|N〉′0 runs
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over all atoms for i < j = 1, 2, ..., N with V = gδ(ri − rj).
From V = 0 at the boundary of the system, Appendix A
proves

SV =
�

4

2M2

〈
gδ(ri − rj)

{(∇2f
) (∇2f∗)
+(∇f) · (∇∇2f∗)}〉′

0
. (6)

This is a two-fold summation for i < j = 1, 2, ..., N and a
N -fold integral in 3D real space. For some special modes
in which ∇2f = 0 we have SV = 0. There is no contribu-
tions to the cubic sum rule of the interaction energy for
these modes. Carrying out the straightforward algebra,
the kinetic energy’s contribution to S3 is written as

ST =
�

6

4M3

〈{
− 1

2
(∇∇2f∗) · (∇∇2f

)

+
1
2

(∇f∗) · (∇∇4f
)

+
[
(∇f∗) · ∇,

(∇∇2f
) · ∇]

+
[
1
2

(∇2f∗) + (∇f∗) · ∇,
[∇2, (∇f) · ∇]] }〉

0

.

(7)

In the usual sum-rule approaches, the EES can be calcu-
lated by the estimate [19] (�ωnf

)2 � S3/S1 = (SU +SV +
ST )/S1 when the spectral density or summation kernel
in S3 has a sharp peak at the position of ω = ωnf

for
choosing f to excite (nf )th excitation state. The sum-rule
approach has at least two points in advances: it only uses
the knowledge of the ground states in the system; it pro-
vides useful information of the dynamic behavior in the
analytic form. Of course, it only gives the estimates by
the use of the method similar to the higher Green func-
tion approximation.

There is a few system that is exactly solvable in the
many-body quantum mechanism. An energy-dependent
operator F̂ is in such form that F̂ |N〉n is an eigenstate
of the system. From [F̂ , Ĥ ] = 0 the EES formula can
be obtained by various traditional methods. The sum-
rule approaches are invalid since Ĝ ∝ [F̂ , Ĥ ] = 0, S1 ∝
〈[F̂+, Ĝ]〉0 = 0 and S3 ∝ 〈[Ĝ+, [Ĝ, Ĥ]]〉0 = 0 for any ex-
citation states. But sometimes the sum-rule approaches
are exact if the excitation operator F̂ is chosen in such a
way that F̂+|N〉n = F0nδn,nf

|N〉n in the definition of Sk

in equation (2) for the (nf )th excitation state with F0n

the matrix elements of F̂ , and if expectation values of
commutators such as equations (3) and (4) are taken in
the exact ground state. For practical system with the sum
rule, one usually makes approximations both for the ex-
citation operator F̂ which excites some interacting states,
and for the ground states which doesn’t know exactly in
general. In other words, when one doesn’t find the single
excitation at n = nf , we choose F̂ in such a way that
F̂+|N〉n = F0n|N〉n for some excitation states around
n = nf and F0n � F0nf

for n 	= nf where the quan-
tum states {n} are interacting with the quantum state nf

and a lot of other noninteracting states don’t be excited.
In the analytic expression for the EES we assume that the

wave function is the exact ground state that depends on
all the particle coordinates.

The estimate of S3/S1 and its correction can also be
understood by the continuous form of equation (2), Sk =∫ ∞
0 |F0nf

(ω)|2(�ω)kρ dω =
∫ ∞
0 χ′′(ω)(�ω)kdω (k = 1, 3).

Here ρ is the density of states dependent on dimension
and choice of coordinates of the system. F0nf

(ω) is the
matrix elements of F̂ in the continuous form of excitation
energies and χ′′(ω) is the imaginary part of an appropri-
ate response function. Sum rules are exact if the matrix
elements are taken in the exact ground state and are a
delta function at ω = ωnf

. In practice the spectral den-
sities are not delta functions since we can’t find a such
excitation operator. The sum-rule approaches are not ex-
act even if the commutators in equations (3) and (4) are
taken in the exact ground state. If the spectral density
functions in Sk have sharp peaks at the frequencies ωnf

for the (nf )th excitation state, then Sk ∝ (�ωnf
)k and

S3/S1 = (�ωnf
)2. In the usual sum-rule approaches, the

choice of f for the special (nf )th excitation state always
leads the spectral density to be sharply peaked at ω = ωnf

.
Therefore the EES can be calculated by the estimate [19]
(�ωn)2 � S3/S1. In general, however, the spectral den-
sity involves some non-quantum background that deduces
S3/S1 	= (�ωnf

)2 for the entire modes {nf} with vari-
ous choices of f form. The correction on the usual sum
rule is necessary in most cases. Although we don’t know
exactly the spectral density functions in practical system
since |N〉n still is unknown, we may assume that the spec-
tral density is sharply peaked around ωnf

theoretically af-
ter generalizing the form of f to all modes, the cost is to
correct S3 into Sc

3 in very clear physical meanings. In that
way we will find that the ratio Sc

3/S1 provides an upper
bound to the frequency ωn of mode n (here and hereafter
we note n = nf ). In other words, for estimating the EES
for the entire excitation modes within the framework of
the sum-rule approaches, we are choosing a suitable form
of f for showing the nature of the excitation mode, look-
ing at the ratio in two limits N → 1 and N → ∞, and
observing what corrections must be made to S3 in order
to recover the known limiting mode frequencies, on the
basis of the control theory for the asymptotic behavior of
the EES. This is the original motivation with the usual
physical methodology.

In fact we need to correct ST and SV and no need
for correction for SU since the kinetic energy dominates
the dynamic process at the weak interacting limit, the
interaction energy dominates at the strong interacting
limit, while SU is proportional to S1 simply and the
potential energy takes effect in the whole regime of N .
How to correct ST and SV ? For some special modes,
such as the surface modes in the spherically symmetri-
cal potential, the Laplacian of the excitation operator
vanishes. From equations (6) and (7) one has SV = 0
and ST = (�6/4M)〈[(∇f∗) · ∇, [∇2, (∇f) · ∇]]〉0 	≡ 0 for
∇2f = 0. This implies in general that there had better is
a shift δST for correcting ST and a multiplicative factor β
for correcting SV , i.e., Sc

T = ST − δST and Sc
V = βSV .

In that corrections, the general expression for the EES at
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any trapped atom numbers is

(�ωn)2 = (SU + Sc
T + Sc

V )/S1. (8)

ωn(N) as a function of N has two limiting cases: ωn(1)
and ωn(∞). At N = 1, SV = 0 and ωn(1) is well-known
exact solutions while at N → ∞, ST = 0 and ωn(∞)
has known approximate solutions. As two boundary con-
ditions, ωn(1) and ωn(∞) in equation (8) determine in-
dependently the parameters δST and β after choosing a
suitable form of f and carrying out the one-fold and two-
fold integrals in equations (5–7). Fortunately, if the shift
correction is to drop the constant spectral density in ST ,
then ωn(N) from equation (8) is exact at N = 1 limit.
This is because the quantum fluctuation effects to the
ground state confine to retain the gradient operator and
to cancel the constant operator in the spectral density
of ST . In N → ∞, the Gross-Pitaevskii equation has ex-
plicit analytic eigenvalue solution ωn(∞) for the low-lying
excitations; Bogoliubov equations have full numerical so-
lution ωn(∞) for the high-lying excitations. Although we
don’t know exactly the limiting results of ωn(∞), we can
determine β by an approximate results of ωn(∞), on the
basis of the control theory for the asymptotic behavior if
one assumes that ωn(N) has the monotonically asymp-
totic behavior near the boundary of N → ∞. The cor-
rected sum rules are valid over the whole range from small
to large atom numbers, and the results agree exactly with
the harmonic oscillator in single-body limit and agree well
with the Thomas-Fermi results in the strong interaction
limit for the entire excitation modes of a Bose-Einstein
condensate. Therefore, the analytic results of equation (8)
in the middle ranges will be useful.

The expectation-value calculation of SV in equa-
tion (6) is more complex, since it integrates in two folds in
the continuous forms of V and f . To avoid the difficulty ex-
cept for ∇2f = 0, we will use the generalized virial identi-
ties. The detail is given in the Appendix B. In that way V ’s
contribution to S3 will be substituted by U ’s and T ’s con-
tributions and this is a reduced dimension method from
two-fold to one-fold integrals in mathematics.

3 Theory calculations

For carrying out the corrected sum rules, generalized
virial identities and general calculations of ω̃n(N) ≡
ωn(N)/ω⊥ for different traps, we consider three sym-
metries of harmonic-oscillators: 3D spherical symmetry,
2D circular symmetry and 3D cylindrical symmetry.

3.1 3D spherically harmonic trap (λ ≡ 1)

For a 3D trap with spherical symmetric potential U(r) =
Mω2

⊥r2/2, we suppose that the quantum numbers nr, l, m
make sense in the many-body system at finite N since n =
{nr, l, m} present the complete set of the modes. Choosing
the excitation operator f(r) =raYlm(θ, ϕ) with a = 2nr+l
and Ylm the spherical harmonics and using ∇2f = n2f/r2

with n2 = 2nr(2nr +2l+1), we get from equations (3), (5)
and (6) the results

S1 =
�

2

4M

[
a2 + l(l + 1)

] 〈
r2a−2

〉
0
, SU = �

2w2
⊥aS1, (9)

SV =
�

4

4M2
a(2a − 1)n2VV (10)

with VV = 〈gδ(r − r′)r2a−4〉′0. The choice of the
form Ylm(θ, ϕ) in f(r) comes from the nature of the eigen-
states in two limits of N = 1 and N → ∞. When the ex-
citation operators Ylm(θ, ϕ) are taken in the exact ground
state at finite N , it still is an eigenstate of the system in
2D angular coordinates (θ, ϕ). The system has the spher-
ical symmetry at finite particle numbers for the entire
modes. Taking advantage of this symmetry one needs only
to consider the radial part of the ground-state wave func-
tion |N〉0 since the expectation values taken in |N〉0 in
separated variables (θ, ϕ) have been carried out easily be-
low. Thus the calculation of S1 and S3 have been greatly
simplified. The choice of the form ra in f(r) comes from
the nature of the density fluctuations of the entire modes
(nrl modes). ra is a leading term of the radial series so-
lutions of the Schrödinger equation and Gross-Pitaevskii
equation at N = 1 and N → ∞, respectively, focusing on
exciting the chosen nrl mode generally. If we choose f
as the ath order polynomial, the sum-rule estimate is
wrong even if with and without the correction of ST since
the f excites a lot of other noninteracting states. The
lower-order terms in f excite a lot of lower levels, lead-
ing the spectral density to be smooth. Carrying out the
algebra in equation (7) carefully, the terms higher than
second-order partial differentiations have been canceled
each other, there only keep down three terms

ST =
−�

6

2M3
a(a − 1)

[
a2 + l(l + 1)

]

×
〈

r2a−4

{
∂2

∂r2
+

2
r
(a − 1)

∂

∂r
+ γ

n2

r2

}〉
0

, (11)

with a � 1. The second-order and first-order differentia-
tion terms come from the Laplacian of the kinetic energy.
Where γ is a quantum-number-dependent nonzero con-
stant, presenting the non-quantum background. It is not
worthwhile to write the formula of γ in more detail since
the shift correction is equivalent to set γ = 0 for reflecting
the quantum fluctuations only. Quantum effects original
from the fluctuations which behave as the gradient opera-
tor rather than the constant operator taken in the ground
state. In other words, the reserved part in ST just is the
corrected Sc

T = ST −δST by letting γ = 0 in equation (11),
a true kinetic energy contribution to S3. It is shown from
equation (11) that Sc

T originals from the quantum fluctua-
tions of the ground-state wave function, and that δST ∝ γ,
the shift of ST , comes from the background of the ground-
state wave function. By shifting this background, the peak
positions of the spectral density will be at ω = ωn. The
scheme works well and equation (8) is useful for finite N
for the entire modes. In some special symmetric modes,
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such as in the surface modes 0l where n2 in per-factor
of γ vanishes due to ∇2f = 0, δST ∝ n2γ = 0 and the
usual sum-rule approaches are correct [4]. In most sym-
metric modes, however, we need the shift correction.

We now calculate and correct SV in equation (10).
The interaction virial VV = 〈gδ(r − r′)r2a−4〉′0 is a two-
fold integral, the generalized virial identity can reduce
it to two one-fold integrals. Substituting equation (36)
into equation (10), we get the simple result SV =
(�4/2M2)an2(VU − VT ). The correction factor β is deter-
mined by the value of ω̃2

nrl(∞). This enhancement factor
of the collective interaction is

β = βnrl = nr +
l

2
+

l(l + 1)
2(2nr + l)

. (12)

In some lowest excited states, it needs not to cor-
rect SV [4,18]: for the surface modes 0l, SV = 0 for
∇2f = 0; for the lowest monopole mode 10, β = 1 in equa-
tion (12). In general β 	≡ 1, the correction is necessary.

Substituting equations (10–12) into equation (8), the
general EES for the trap with spherically harmonic sym-
metry is expressed analytically as

ω̃2
nrl(N) = a +

1
2
n2 − n2

VT

2VU
+ a(a − 1)

V c
T

VU
, (13)

where V c
T = −(�2/2M)〈r2a−4∂2/∂r2+2(a−1)r2a−5∂/∂r〉0

is the kinetic energy virial. Equation (13) gives all EES
information for the entire modes nrl as long as we have
the knowledge of the ground state in the N -body sys-
tem. Specially at N = 1, the eigenfunction |1〉0 is exactly
Gaussian, we have VT = V c

T = VU . From equation (13),
ω̃nrl(1) = a = 2nr+l, just an exact eigenvalue after a good
choice of f and a correct shift correction on ST . At the op-
posite limit of N → ∞, VT = V c

T → 0, equation (13) gives
ω̃2

nrl(∞) = a + n2/2 = 2n2
r + 2nrl + 3nr + l, just a correct

EES after a good choice of f and a correct factor correc-
tion on SV . Therefore, by the aid of the control theory for
the asymptotic behavior and the corrected sum-rule esti-
mates, equation (13) in whole middle ranges is available
when the ground-state wave function is well defined.

Unfortunately, by now we don’t have the exactly an-
alytic expression for the ground-state wave function |N〉0
in 3D interacting N -body Bose gases with the harmonic
traps. Although the selfconsistant wave function |N〉0 is
readily calculated numerically [11–16], it is often useful
to apply an analytic approximation to equation (13) for
getting an explicit analytic formula. A boundary-layer for-
malism [20] solved the kinetic energy divergence problem
in the Thomas-Fermi limit. Two very different approxima-
tions have been proposed [21]: a Gaussian trial function
in small N regime and a Thomas-Fermi approximation in
large N limit. A multi-parameter variational trial func-
tion [22] has already been found. This function includes
the Gaussian function in small N limit, approaches the
correct Thomas-Fermi result in large N limit and yields
an interpolation for intermediate values of N . For sim-
plicity, we next consider a Gaussian approximation and
use variational method in order to calculate equation (13)

explicitly. The EES of equation (13) for all modes nrl sim-
plifies to [18]

ω̃2
nrl(N) = (2nr + l)2q2 + (2n2

r + 2nrl + 3nr + l)(1 − q2)

= ω̃2
nrl(1)q2 + ω̃2

nrl(∞)(1 − q2), (14)

a linear combination with the probabilities q2 at N = 1
and 1 − q2 at N → ∞. This result is valid for the
whole parameter ranges of N [1,∞), p[0,∞) and corre-
sponding q[1, 0). Where q is a function of the variable
p =

√
2/π(asc/aho)(N − 1) by p = (1 − q2)/2q5/2. Ac-

tually, it is very simple to use q as a variable in the range
of q(0, 1]. Although the Gaussian approximation is not a
Thomas-Fermi form, both the controlling of the asymp-
totic behavior for ωnrl(N) and the variation parameter
behavior of q → 0 at N → ∞ ensures that equation (14)
has a correct result in Thomas-Fermi limit. Equation (14)
shows that the EES for all modes has the decrease behav-
ior with increasing the parameter p, except for the surface
excitation mode 10, ω̃2

10(N) = 5 − q2, which shows an in-
crease behavior. This predication is consistent with the
numeral results [11,12]. However, the result of 20 mode
in [12] is not obey equation (14) in that its value in the
N → ∞ limit is higher than the N = 1 value. From (14) we
have ω̃2

20(N) = 14 + 2q2. At N = 1, q = 1 and ω̃20(1) = 4;
while at N → ∞, q = 0 and ω̃20(∞) =

√
14 < 4. The

variation parameter q decreases monotonically with the
increase of N , in that case the behavior of 20 mode shown
in the figure in [12] would indeed be wrong. The result
of equation (14) is also valid for the negative scattering
length (asc < 0). With increasing values of −p, the attrac-
tive interaction becomes more and more important, up to
the point, −pc, where an unstable condensate forms that
would collapse. From the condition ω̃10(Nc) = 0 and the
equation −pc = (1 − q2

c )/2q
5/2
c , one has the critical point

at qc =
√

5 and pc = −2/55/4. Hence, in that case the col-
lapse region is in q(1, qc) and p(pc, 0). Except for the soft
of the 10 mode (the soft of the 01 mode doesn’t appear
in the sum-rule approaches), the entire modes are hard
in the collapse region. Figure 1 shows some of the lowest
elementary excitation spectra in both regions.

To compare our results with numerical points pre-
sented in [15] for an isotropic harmonic trap (λ = 1),
one takes the same parameters for Cs atoms contained in
the trap of ν⊥ ≡ ω⊥ = 10 Hz. These values of the pa-
rameters are M = 2.2 × 10−25 kg, asc = 3.18 nm, g =
2.0× 10−51 Jm3, aho = 1.95

√
2× 10−6 m and N = 10546.

The value of p then becomes p = 9.70207 and the solution
of q2 is q2 = 0.086729. Table 1 presents the comparison
for some low-lying modes. Our computation ω̃srv comes
from equation (14) and numerical points ω̃num adopt from
Tables I and II of [15] with a maximum basis-set size
Nbasis = 40. The difference between ω̃num and ω̃srv ranges
from 0% to 19%. The numerical differences come both
from the Gaussian approximation of |N〉0 and from the hy-
drodynamic approximation for bigger quantum numbers.
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Fig. 1. The elementary excitation spectra as a function of
the interaction strength parameter p, including the negative
scattering length, for different nrl modes in the spherically
symmetric harmonic potential traps (λ ≡ 1).

3.2 2D circularly harmonic trap (λ ≡ 0)

We assume that the chosen quantum numbers n = {ns, m}
are available since the radial parity Ps = [+] is alive
and Ps = [−] is forbidden at finite N . We now choose
in general the excitation operator as f(r) =sb exp(imϕ)
with b = 2ns + |m| since exp(imϕ)|N〉0 is still an eigen-
state in the expectation-value calculations of S1 and S3

and sb is a leading term of the radial series solutions of
the Schrödinger equation and Gross-Pitaevskii equation
at N = 1 and N → ∞. From equations (3), (5) and (6)
we get

S1 =
�

2

2M

〈(
b2 + m2

)
s2b−2

〉
0
, SU = �

2ω2
⊥bS1, (15)

SV =
�

4

M2
b(b − 1)

(
b2 − m2

) 〈
gδ(s− s′)s2b−4

〉′
0
. (16)

From equation (37) then equation (16) turns to

SV =
�

4ω2
⊥

M

b(b − 1)
(
b2 − m2

)
2b − 1

[ 〈
s2b−2

〉
0

+ a4
ho

〈
(2b − 3)s2b−4 ∂2

∂s2
+

(
2b2 − 6b + 5

)
s2b−5 ∂

∂s

〉
0

]
.

(17)

In the limit N → ∞, we neglect the kinetic energy
with respect to the interatomic interaction, i.e., vanish-
ing the partial differentiations in equation (17). From
ω̃2

nsm(∞) = b + (b2 − m2)/2 [5] and Sc
T → 0 in equa-

tion (8), we find that the correction factor β is expressed

Table 1. A comparison of the numerical data in [15] for a
maximum basis-set size Nbasis = 40 with a calculation of
equation (14) using the same parameters of asc = 3.18 nm,
aho = 1.95

√
2 × 10−6 m and N = 10546.

nrl ω̃num ω̃srv % diff.

01 1.000 1.000 0.00

02 1.562 1.474 3.53

03 2.065 1.876 10.1

10 2.193 2.217 1.08

04 2.660 2.245 18.5

11 2.872 2.844 0.98

12 3.510 3.381 3.82

20 3.872 3.765 2.84

13 4.156 3.867 7.47

21 4.636 4.418 5.09

14 4.828 4.318 11.8

22 5.373 5.004 7.37

30 5.598 5.271 6.21

23 6.104 5.544 10.1

31 6.422 5.942 8.42

24 6.844 6.050 13.1

32 7.223 6.557 10.2

40 7.383 6.763 9.17

90 16.76 14.17 18.3

exactly for the nsm modes as

βnsm =
(2b − 1)

(
b2 + m2

)
4b(b − 1)

. (18)

This is an enhancement factor due to the collective inter-
action effects. From equation (7) it is easy to deduce

Sc
T =

−�
6

2M3
b(b − 1)

(
b2 + m2

)

×
〈

s2b−4 ∂2

∂s2
+ (2b − 3)s2b−5 ∂

∂s

〉
0

. (19)

Where we have shifted the constant operator γ terms with
respect to the differentiation terms and used the inde-
pendence of the ground-state wave function on the polar
angle ϕ. Consequently, from equation (8) the analytic ex-
pression for the EES is

ω̃2
nsm(N) = b − b(b − 1)

a4
ho

〈s2b−2〉0
×

〈
s2b−4 ∂2

∂s2
+ (2b − 3)s2b−5 ∂

∂s

〉
0

+
1
2

(
b2 − m2

) [
1 +

a4
ho

〈s2b−2〉0
×

〈
(2b − 3)s2b−4 ∂2

∂s2
+

(
2b2 − 6b + 5

)
s2b−5 ∂

∂s

〉
0

]
.

(20)
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Fig. 2. The elementary excitation spectra as a function of
the interaction parameter p for different nsm modes in the
circularly symmetric harmonic potential traps (λ ≡ 0).

This is an important result that includes obviously the two
limiting cases ω̃nsm(1) = b and ω̃2

nsm(∞) = b+(b2−m2)/2
and yields reasonably a useful interpolation.

In a variational Gaussian calculation, the trial ground-
state wave function with a single variation parameter q

takes the form |N〉0 = (
√

N/aho) (q/π)1/2 exp(−qs̃2/2)
with s̃ = s/aho. From equation (1) we calculate the
expectation value of the ground-state energy as E0 =
�ω⊥(1

q +q+2pq3/2)/2. From ∂E0/∂q = 0, q is the positive
real root of the equation 1 − q2 = 3pq5/2. Thus the EES
for all modes nsm is expressed explicitly as

ω̃2
nsm(N) = b +

1
2

(
b2 − m2

)
+

1
2

(
b2 − 2b + m2

)
q2. (21)

This result is also valid for the whole parameter ranges
of N [1,∞), p[0,∞) and q[1, 0), and shows clearly a linear
combination of ω̃2

nsm(1) and ω̃2
nsm(∞) with the probabili-

ties q2 and 1− q2: ω̃2
nsm(N) = ω̃2

nsm(1)q2 + ω̃2
nsm(∞)(1−

q2). Figure 2 shows the plots of ωnsm/ω⊥ versus p for dif-
ferent nsm modes in the traps (λ ≡ 0) with the circular
symmetry.

3.3 3D cylindrically harmonic trap (λ �≡ 1)

By extending the 2D excitation operator, we choose in
general f(r) =sbzk exp(imϕ) with k = αnz . In the choice
of the excitation operators in single-body 1D axial, many-
body 3D spherical and 2D circular symmetries of the har-
monic oscillators we remember that the radial operators
xn, ra and sb are all the leading terms of the radial series

solutions of the Schrödinger equation and Gross-Pitaevskii
equation at N = 1 and N → ∞, if one needs to ex-
cite modes n = {n}, {nr, l, m} and {ns, m}, respectively.
These simply choices lead equation (8) to have exact re-
sults at N = 1 after shifting the non-quantum background
in the spectral density of ST . Another choices of the exci-
tation operator make a vain attempt, not only creating a
lot of new crossing terms, but also exciting a lot of other
noninteracting levels. However, the existence of the cou-
pling between s and z is an innate character for the cylin-
drically symmetrical system. For simplicity, we choose the
coupled leading term as sbzk and introduce a parameter
α 	 ≡ 1 to represent the coupling between the axial and
radial motions. From equations (3), (5) and (6) we get

S1 =
�

2

2M

〈 (
b2 + m2

)
s2b−2z2k + k2s2bz2k−2

〉
0
,

SU = �
2ω2

⊥
(
b + λ2k

)
S1, (22)

SV =
�

4

2M2

〈
gδ(r − r′)

{
2b(b − 1)

(
b2 − m2

)
s2b−4z2k

+ k
(
4b2k − 3b2 − 2km2 + m2

)
s2b−2z2k−2

+ k2(k − 1) (2k − 3)s2bz2k−4
}〉′

0
. (23)

In order to reduce the two-fold integral in equation (23)
into the one-fold integrals, we generalize the virial iden-
tity (37) to the case of the axial symmetry (see Ap-
pendix B). By the use of equation (38) with the different
values of µ and ν, equation (23) in the one-fold integral
reads to equation (39) in Appendix C.

The calculation of ST in equation (7) is very compli-
cated. After some lengthy, but straight forward algebra
very carefully, we find a general expression for Sc

T enter-
ing in equation (40) in Appendix C. Here we have shifted
the constant operator γ terms and used the independence
of the ground-state wave function on the polar angle ϕ,
as well as arrived the result that the terms higher than
two-order partial differentiations have been canceled each
other in the commutator calculations. The over length ex-
pressions for SV and Sc

T in equations (39) and (40) come
from two variables s and z and their coupling. In the limit
of N → ∞, Sc

T → 0 and the kinetic energy contribution
to SV vanishes. The correction factor β is determined en-
tering in equation (39) of Appendix C. It is not neces-
sary to make this correction factor for some modes with
∇2f = 0 in which SV = 0 already; the parameter α will
be determined below for the strong coupling modes, while
for the decoupling modes with ns = 0, one has α = 1 and
with nz = 0 one has k = 0.

Consequently, from equation (8) the analytic expres-
sion for the EES with the cylindrically harmonic trap is

ω̃2
nznsm(N) = b + λ2k + (Sc

T + βnznsmSV )/�
2ω2

⊥S1. (24)

This is our key result. Here S1, SV and Sc
T are expressed

in equations (22), (39) and (40), respectively. The fac-
tor βnznsm is expressed in equation (41) and the coupling
parameter α, appearing in k = αnz , will be determined
by the condition of ω̃nznsm(1) = 2ns + |m| + λnz .
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ω̃2
110(N) = 2 + λ2α +

q2

2α − 1 + λ̃α2

[
2(2α − 1) + 2α(5α − 1)λ̃ + α

(
6α2 − 3α − 1

)
λ̃2 + α3(α − 1)λ̃3

]

+
β110(

2α + 3)(2α − 1 + λ̃α2
){

2
(
4α2 − 1

)
λ2/λ̃ + (2α − 1)

[
4 + α(4α − 3)λ2] + α

[
4(4α − 3) + α(α − 1)(2α − 3)λ2]λ̃

+ 6α2(α − 1)λ̃2 − q2
[
4(2α − 1) + 2

(
12α2 − 6α − 1

)
λ̃ + α

(
14α2 − 16α + 3

)
λ̃2 + α2(α − 1)(2α − 3)λ̃3

]}
(27)
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Fig. 3. The variational parameters as a function of the inter-
action strength p in the axially symmetric harmonic potential
traps with λ =

√
8 . The left vertical axis is the “single-body

probability” q2 and the right vertical axis is the effective fre-
quency ratio λeff = λ̃.

For getting the explicit expressions for ω̃nznsm(N),
we use the simple variational Gaussian ground-state wave
function in the N -body system by introducing two varia-
tion parameters q and λ̃ [18]. Figure 3 shows the plots
of q2 (left vertical axis) and λ̃ = λeff (right vertical
axis) versus p with λ =

√
8. The “single-body probabil-

ity” q2—ω̃2
nznsm(1) contribution to ω̃2

nznsm(N), decreases
sharply with increasing of p in small N regime. The many-
body effects dominate the dynamics of the system in
large N regime. The explicit expression for the EES is

ω̃2
nznsm(N) = b + λ2k

+
ξq2 + βnznsm(η − ζq2)/(2k + 2b − 1)

(2k − 1) (b2 + m2) + 2k2bλ̃
. (25)

The quantities entering in equation (25) are defined in
equations (42–44).

It is easy to show that for q → 0, p → ∞ and λ̃ = λ2

at N → ∞, the finial result of equation (25) turns to
the result of equation (42), and that for q = 1, p = 0

and λ̃ = λ at N = 1, the interaction energy contribution
to ω̃2

nznsm(N) in equation (42) vanishes. This check proves
our correct calculations. In the absence of the interatomic
interaction, substituting ω̃nznsm(1) = b + λnz , q = 1 and
λ̃ = λ at N = 1 into equation (42), we find that α is the
positive real root of the algebra equation
[
(b + λnz)2−

(
b + λ2k

)][(
b2 + m2

)
+(2k − 1)+2bλk2

]
=

b(b − 1)
(
b2 − m2

)
(2k − 1) + 2λ

[
b
(
3b2k − bk − b2 + b

)
+ (b − 1)m2(2k − 1)]k + [6k2 − 3k − 1)b2

+ m2(k + 1)(2k − 1)]λ2k + 2bλ3k3(k − 1). (26)

In fact, we only need to choose the root near 1. α � 1
for λ > 1 and α � 1 for λ < 1. Of course, k = 0 for
0nsm modes and k = 1 for nz00 and 10m modes. They
are decoupling modes and hence they recover the har-
monic oscillator results of ω̃nznsm(1) = λnz +2ns + |m| in
the absence of the interatomic interaction. There is nei-
ther shift correction on ST nor factor correction on SV

for the 00m and 10m modes with m = 0,±1,±2, ... For
the 0ns0 and nz00 modes the multiplicative factor is nec-
essary for correcting SV with ns ≥ 1 and nz ≥ 2 and
the shift is necessary for correcting ST with ns ≥ 2 and
nz ≥ 3. For these decoupling modes, after the suitable
choice of f and correct shift correction on ST , the results
of equation (24) are exact at N = 1 since the state |1〉0
is exact. We can’t get the given ω̃nznsm(1) = b + λnz di-
rectly from equation (24) for the coupling modes, even if
with another choices of f and another corrections on ST .
As mentioned above, in that wrong way it is impossible
to get the correct result of ω̃nznsm(1). We insistently use
this physical correction and extend the choice of f to the
coupling modes by introducing the parameter α. Further-
more we use ω̃nznsm(1) = b + λnz as a known boundary
condition to determine α in equations (24) or (25).

To illustrate the properties of the EES we write
out several typic results explicitly. From equations (25)
and (26) we have ω̃2

001(N) = 1, ω̃2
002(N) = 2(1 + q2),

ω̃2
010(N) = 2 + 2q2 + 2β010[2 + λ2/λ̃ − (2 + λ̃)q2]/3,

ω̃2
100(N) = λ2, ω̃2

101(N) = 1 + λ2 + 2λ̃q2 and

see equation (27) above.

Where α = α110 satisfies equation (26) which simplifies to

λ2α4 + 6λα3 +
(
8 − 5λ − λ2

)
α2 − 2(5 + 2λ)α + 4 + λ = 0.

(28)
Figure 4 shows the plots of ωnznsm/ω⊥ versus p for those
modes with λ =

√
8 in the axially symmetrical trap. The
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Fig. 4. The elementary excitation spectrum as a function of
the interaction parameter p for different nznsm modes in the
axially symmetric harmonic potential traps with λ =

√
8. The

dots represent experimental data for 002 and 010 modes with
λ =

√
8 [23].

results agree well with the experimental data [23] denoted
by the dots for 002 and 010 modes. These two modes have
the boundary values ω̃002(1) = ω̃010(1) = 2 at N = 1 and
ω̃002(∞) =

√
2 and ω̃010(∞) =

√
14 −√

116 � 1.79713 at
N → ∞. And hence one finds β010 = [ω̃2

010(∞)/2 − 1] �
0.614835 < 1, leading ω̃010(N) to be lower than the up-
per boundary estimate of the usual sum-rule approaches.
From equation (28) we solve α110 = 1.08871 for λ =

√
8,

representing the coupling between the z- and s-direction
motions.

We have compared our results with experimental
data [23] and numerical points [11]. The frequency ratio
is taken to be λ =

√
8 and the scattering length is taken

to be asc = 110 a.u. = 5.82 nm. For given values of z-
axis frequency ν⊥ and condensate-number parameters N ,
we calculated the harmonic-oscillator length scale aho and
the interaction parameter p. From equation (25) we calcu-
lated the values of ω̃2

nznsm(N). The comparison is shown
in Table 2. The experimental [23] and numerical [11] data
adopt from Table 1 of [11] and the modes mark in our
notation. It is shown that the agreement is excellent and
the difference between theory and experiment ranges from
1% to 5%.

4 Summary and discussion

The combination of the corrected sum rules and gener-
alized virial identities has been used to calculate analyt-
ically the elementary excitation spectrum for the entire

Table 2. A comparison of the data of [11] with a calcu-
lation of equation (25) using the actual experimental trap
(λ =

√
8, aho = 3.32 × 10−6 m for ν⊥ ≡ ω⊥/2π = 132 Hz),

scattering-length (asc = 110 a.u.), and condensate-number pa-
rameters (N) of [23].

nznsm ν⊥ N ω̃exp ω̃num ω̃srv %num % srv

002 132 2200 1.39–1.42 1.47 1.46 5.8 5.0

002 43.2 2800 1.41–1.44 1.49 1.48 5.7 5.0

010 132 2400 1.79–1.83 1.88 1.81 5.0 1.1

010 43.2 3420 1.84–1.88 1.89 1.81 2.7 1.6

modes of interacting gases of finite bosons in harmonic
traps with 3D spherical symmetry, 2D circular symmetry
and 3D axially anisotropic symmetry. We have chosen the
leading term of the radial series solutions of the nonlinear
Schrödinger equation as the radial excitation operator and
used the eigenfunctions in other motion directions due to
the symmetries. We have extended the form of the ex-
citation operator for some low-lying modes to the entire
modes with certain kind of symmetries and corresponding
quantum numbers. Along this line we have taken the cor-
rections of the cubic sum rules for having the sharp peak
positions of the spectral density in sum rules S1 and S3.
According to the control theory for the asymptotic be-
havior, we have determined uniquely the corrections of
cubic sum rules both in kinetic energy constant shift and
in potential energy multiplicative factor for all modes,
and hence the calculations are true as long as we know
the N -body ground state. By the use of the generalized
virial identities, we have reduced the calculation associ-
ated with the interaction energy from a two-fold integral
to two one-fold integrals, and hence the cubic sum rule of
the interaction energy is expressed by those of potential
and kinetic energies. We have obtained the explicit ana-
lytic expressions for the entire energy spectra by using the
simple variational Gaussian ground-state wave function of
the N -body condensate in the traps with spherically, cir-
cularly and axially symmetric harmonic-oscillator poten-
tials. We have also obtained the dependence of the entire
energy spectra on the atom number in the trap and on the
interatomic interaction strength, as well as on the trap
geometry parameter. There are not any variable control
parameters in the formulas for the elementary excitation
spectrum. Our results are illustrated in Figures 1–4 and
the comparison is summarized in Tables 1 and 2. The pre-
vious analytic and numerical results are only some special
cases for the low-lying excitation modes.

The choice of the form of excitation operator in this
work is simplest and useful by taking advantage of the
symmetries of the system under consideration. The calcu-
lations of S1 and S3 have been greatly simplified by taking
account of the radial part of the ground-state wave func-
tion only. As the radial excitation operator, it is impossi-
ble to choose the linear combination of some lower terms
in the radial series solutions of the nonlinear Schrödinger
equation since these terms excite a lot of other noninter-
acting states. After this best choice of f , one needs to
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correct the cubic sum rules ST and SV associated with
the kinetic and potential energies. The shift correction
on ST , determined by the boundary value ωn(1), means to
drop the constant spectral density in order to appear the
quantum fluctuation effects. The factor correction on SV ,
determined by the boundary value ωn(∞), controls the
magnitude of the elementary excitation spectrum in the
whole range of p. The quantum corrections on ωn(∞) [7]
do not change the analytic formulas, but improve the mag-
nitudes in the whole range of q as well as p. Specifically
for the higher-lying excitation modes, the numerical so-
lution ωn(∞) of the Bogoliubov equations improves the
magnitudes significantly. The calculation of the elemen-
tary excitation spectrum is valid for whole range from
small to large atom numbers. For the higher energy levels
with the strong coupling between the axial and radial mo-
tions, the introduced parameter α is determined by the
boundary condition of ωn(1). It is worthwhile to point
out that we have obtained the explicit analytic expression
for ωnznsm(N). Funnily the limiting result ωnznsm(∞)
doesn’t still have the explicit analytic expression. For all
modes the hydrodynamic results in the strong interaction
case have been known as a boundary condition. There-
fore, the explicit analytic results in the middle ranges are
available and the analytic expressions for the entire en-
ergy spectrum provide enough information for the quan-
tum statistics of the N -body nonhomogeneous interact-
ing Bose gases. Since the elementary excitation concept
presented by Landau has the strongest physical intuition
and the measurement of energy spectrum of these elemen-
tary excitations has the finest precision, we suggest that
the further experiments and numerical works consider the
higher excitation states to confirm our predications.

Fetter’s trial wave function [22] with three variation
parameters maybe are a better choice than ours with
two variation parameters. The usual sum-rule approaches
combining with Fetter’s variational function have obtained
the EES of 002 and 010 modes [24]. The plots in Figure 1
of [24] are indistinguishable from our Figure 4. The differ-
ence between the Gaussian and Fetter’s approximations is
very small at small p even at middle p. However, although
this difference becomes big at N ∝ p → ∞, the control-
ling of asymptotic behavior leads the EES to be an given
approximative value. Table 1 of [18] has also compared
the total energy, kinetic energy, trapping potential energy
and interaction energy obtained from the Gaussian ap-
proximation with those obtained variationally [22,24] and
numerically [25]. From a practical point of view, it would
be interesting to calculate equations (13), (20) and (24)
with Fetter’s multi-parameter variational functions, but
such a calculation remains the finite precision since it has
the same value with the variational Gaussian calculation
in the limit of infinite bosons [26]. From a theoretical point
of view, it is interesting to extend the sum-rule approaches
to the Bose-Fermi gas mixture [27], especially generalizing
the individual eigenstates [28] to the entire eigenstates.

Y.L. Ma thanks Alex Smith for useful discussions and help.
This work is in the project 10274012 supported by NSFC.

Appendix A: Proof of equation (6)
the interaction energy contribution
to the cubic sum rule

For any V -dependent vector operator Q̂(V ) the Gaussian
integral theorem states that

〈{
∇ · Q̂(V )

}〉′

0
= 0 (29)

for Q̂(V ) = 0 at the boundary of the system. In fact the
interatomic interaction vanishes at the boundary. Along
this line the interaction energy functions which arise on
commuting with the momentum operator in SV can be
changed to a derivative form in order to avoid the diver-
gence of ∇δ(r). We introduce the notation I = ∇· (V ∇f)
and commutator J ≡ [(∇f∗) · ∇, (∇f) · (∇V )] = (∇f∗) ·
(∇{(∇f) · (∇V )}) in SV . With these notations we find

I = (∇f) · (∇V ) + V
(∇2f

)
, (30)

J = (∇f∗) · (∇I) − (∇f∗) · {∇[V
(∇2f)

]}
. (31)

In equation (31), (∇f∗)·(∇I) = ∇·(I∇f∗)−I(∇2f∗). Ex-
panding the second term of the right hand of equation (31)
and using the complex conjugant of equation (30), one has

J = ∇ · (I∇f∗) − I
(∇2f∗) − I∗

(∇2f
)

+ V
(∇2f

) (∇2f∗) − V (∇f∗) · [∇ (∇2f
)]

. (32)

Expanding

∇ · [V (∇2f
)
(∇f∗)

]
=

(∇2f
)
(∇f∗) · (∇V )

+ V
(∇2f

)(∇2f∗) + V (∇f∗) · [∇(∇2f
)]

and substituting it into the complex conjugant of equa-
tion (30), one has

I∗
(∇2f

)
= ∇ · [V (∇2f

)
(∇f∗)

] − V (∇f∗) · [∇(∇2f
)]

.
(33)

Substituting equation (33) into its complex conjugant

I(∇2f∗) = ∇ · [V (∇2f∗)(∇f)
] − V (∇f) · [∇(∇2f∗)]

into the equation (32), we finally have

J = V
{(∇2f

)(∇2f∗) + (∇f) · (∇∇2f∗)}
+∇·{∇·(V ∇f)(∇f∗)−V

(∇2f
)
(∇f∗)−V

(∇2f∗)(∇f)
}
.

(34)

The expectation value of J in equation (34) gives equa-
tion (6) since the operator Q̂(V ) here is the term within
the second braces of right hand of equation (34) which
vanishes at the boundary.

Appendix B: Generalized virial identities
with different symmetric trap potentials

The usual virial identity states that for a system with
the form of Hamiltonian Ĥ =

∑N
i=1(T + U + V ), from
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〈
gδ(r− r′)sµzν

〉′

0
=

Mω2
⊥

µ + ν + 3

〈
sµ+2zν + λ2sµzν+2

〉
0

+
�

2

2M(µ + ν + 3)

〈
2(1 + µ)sµzν ∂2

∂s2
+

[(
µ2 + 2µ + 2

)
sµ−1zν + ν(ν − 1)sµ+1zν−2

] ∂

∂s

+ 2
(
µsµ−1zν+1 + νsµ+1zν−1

) ∂2

∂s∂z
+

[
µ2sµ−2zν+1 + ν(ν + 1)sµzν−1

] ∂

∂z
+ 2(1 + ν)sµzν ∂2

∂z2

〉
0

(38)

〈dD/dt−∂D/∂t〉 = 〈[D, Ĥ ]〉/i� = 0 at stationary state for
a dimensionless operator D(r, t) = r ·∇ in the Heisenberg
picture, one has the relation among virials

〈r · ∇V 〉 = 〈r · ∇U〉 − 2〈T 〉. (35)

In practice, we need to calculate the expectation value of
the weighted interaction energy in equation (6). For doing
so we have to introduce a weighted operator Dµ relative
to the form of f dependent on the trap symmetries. We
will give different moment-weighted virial identities for the
corresponding symmetrical potentials.

For a 3D spherically harmonic trap (λ ≡ 1), we intro-
duce a ra-weighted operator Da = rar·∇ with a = 2nr+l.
From 〈[Da, Ĥ ]〉0 = 0 for the stationary state, we have

(
a − 1

2

)
VV = VU − VT , (36)

where VU = 〈Mω2
⊥r2a−2/2〉0 is the relative potential

virial, VT = −(�2/2M)〈(2a−3)r2a−4∂2/∂r2 +(2a2−5a+
4)r2a−5∂/∂r〉0 is the kinetic virial, and all of those are with
a moment-weight r2a−4. The weighted virial identity (36)
shows that the interaction virial VV of the two-fold in-
tegral is reduced to VT and VU of the one-fold integrals.
VU = VT for VV = 0 without the interatomic interactions.

For a 2D circularly harmonic trap (λ ≡ 0), we
introduce a s2b−4-weighted operator Db = s2b−4s · ∇ and
generalize the virial identity (36) to the case of the circular
symmetry with b = 2ns + |m|. From 〈[Db, Ĥ ]〉0 = 0 for the

stationary state, we find

(2b − 1)
〈
gδ(s− r′)s2b−4

〉′

0
= Mω2

⊥
〈
s2b−2

〉
0

+
�

2

M

〈
(2b − 3)s2b−4 ∂2

∂s2
+ (2b2 − 6b + 5)s2b−5 ∂

∂s

〉
0

.

(37)

The interaction virial reduces to the potential virial and
relative kinetic virial.

For a 3D cylindrically harmonic trap (λ 	≡ 1), we in-
troduce a sµzν-weighted operator Dµν = sµzνr ·∇ for the
different values of µ and ν. From 〈[Dµν , Ĥ ]〉0 = 0 for the
stationary state, one finds

see equation (38) above.

Obviously, the weighted interaction energy has been ex-
pressed as the difference between the weighted external
potentials and the kinetic energy in their expectation
value (virial) calculations.

Appendix C: General expressions for SV, Sc
T

and βnznsm and their Gaussian approximations
with λ �≡ 1

After some lengthy, but straight forward algebra by substi-
tuting equations (38) and (23) with corresponding values
of µ and ν, we have

SV =
�

4ω2
⊥/2M

2k + 2b − 1

〈
2b

(
b − 1

)(
b2 − m2)λ2s2b−4z2k+2 +

[
2b

(
b − 1

)(
b2 − m2) + k

(
4kb2 − 3b2 − 2km2 + m2)λ2

]
s2b−2z2k

+k
[
4kb2−3b2−2km2+m2+k

(
k−1

)(
2k−3

)
λ2

]
s2bz2k−2+k2(k−1

)(
2k−3

)
s2b+2z2k−4+a4

ho

{[
2b

(
b−1

)(
2b−3

)(
b2−m2)s2b−4z2k

+k
(
2b−1

)(
4kb2−3b2−2km2+m2)s2b−2z2k−2+k2(k−1

)(
2k−3

)(
2b+1

)
s2bz2k−4

] ∂2

∂s2
+

{
2b

(
b−1

)(
2b2−6b+5

)(
b2−m2)s2b−5z2k

+
[
kb2(12kb2 − 12kb − 8b2 + 8b + 4k − 3

) − k
(
2k − 1

)(
2b − 1

)2
m2

]
s2b−3z2k−2 + k

(
k − 1

)(
2k − 3

)(
6kb2 − 3b2 + 2kb + k

− 2km2 + m2)s2b−1z2k−4 + k2(k − 1
)(

k − 2
)(

2k − 3
)(

2k − 5
)
s2b+1z2k−6

}
∂

∂s
+

[
4b

(
b − 1

)(
b − 2

)(
b2 − m2)s2b−5z2k+1

+ 2k
(
b − 1

)(
4kb2 + 2b3 − 3b2 − 2km2 − 2bm2 + m2)s2b−3z2k−1 + 2k

(
k − 1

)(
2k2b + 4kb2 − 3b2 − 3kb − 2km2 + m2)s2b−1z2k−3

+2k2(k−1
)(

k−2
)(

2k−3
)
s2b+1z2k−5

] ∂2

∂s∂z
+

[
4b

(
b−1

)(
b−2

)2(
b2−m2)s2b−6z2k+1 +2k

(
b−1

)(
6kb3−2b3−4kb2 +3b2−4kbm2

+2km2−m2
)
s2b−4z2k−1+k

(
k−1

)(
12k2b2−16kb2+3b2−4k2m2+4km2−m2

)
s2b−2z2k−3+k2

(
k−1

)(
k−2

)(
2k−3

)2
s2bz2k−5

] ∂

∂z

+
[
2
(
2k +1

)
b
(
b− 1

)(
b2 −m2)s2b−4z2k + k

(
2k− 1

)(
4kb2 − 3b2 − 2km2 +m2)s2b−2z2k−2 + k2(k− 1

)(
2k− 3

)2
s2bz2k−4

] ∂2

∂z2

}〉
0

.

(39)
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Sc
T =

−�
6

2M3

〈[
b
(
b − 1

)(
b2 + m2)s2b−4z2k + k2b

(
b + 1

)
s2b−2z2k−2

] ∂2

∂s2
+

{
b
(
b − 1

)(
2b − 3

)(
b2 + m2)s2b−5z2k

+
[
kb

(
4kb2 − kb − k − b2 + b

)
+ k

(
2k − 1

)(
b − 1

)
m2

]
s2b−3z2k−2 + k2(k − 1

)(
2k − 3

)
bs2b−1z2k−4

}
∂

∂s

+ 2k
[(

b − 1
)(

b2 + m2)s2b−3z2k−1 + k
(
k − 1

)
bs2b−1z2k−3

] ∂2

∂s∂z
+ k

[(
k + 1

)(
b2 + m2)s2b−2z2k−2 + k2(k − 1

)
s2bz2k−4

] ∂2

∂z2

+ 2k

{(
b − 1

)2(
b2 + m2

)
s2b−4z2k−1 +

(
k − 1

)[(
2k + 1

)
b2 +

(
k + 1

)
m2

]
s2b−2z2k−3 + k2

(
k − 1

)(
k − 2

)
s2bz2k−5

}
∂

∂z

〉
0

(40)

βnznsm = lim
N→∞

(
2k + 2b − 1

)[
ω̃2

nznsm

(∞) − (
b + λ2k

)]〈(
b2 + m2)s2b−2z2k + k2s2bz2k−2

〉
0
〈2b

(
b − 1

)(
b2 − m2)λ2s2b−4z2k+2

+
[
2b

(
b − 1

)(
b2 − m2) + k

(
4kb2 − 3b2 − 2km2 + m2)λ2

]
s2b−2z2k

+ k
[
4kb2 − 3b2 − 2km2 + m2 + k

(
k − 1

)(
2k − 3

)
λ2

]
s2bz2k−2 + k2(k − 1

)(
2k − 3

)
s2b+2z2k−4〉−1

0 (41)

Substituting f(r) =sbzk exp(imϕ) into equation (7), we
have

see equation (40) above.

Substituting equations (22) and (39) into equation (8)
with vanishing of the kinetic energy, for known ω̃nznsm(∞)
the correction factor β in general is expressed by

see equation (41) above.

The expressions of equations (39–41) are for the quantities
entering in equation (24).

Under the Gaussian approximation, we find the follow-
ing expressions for the quantities entering in equation (25):

ξ ≡ (
2k − 1

)
b
(
b − 1

)(
b2 + m2

)
+ 2k

[
b
(
3kb2 − kb − b2 + b

)
+

(
2k − 1

)(
b − 1

)
m2

]
λ̃

+ k
[(

6k2 − 3k − 1
)
b2 +

(
k + 1

)(
2k − 1

)
m2

]
λ̃2

+ 2k3
(
k − 1

)
bλ̃3, (42)

η ≡ (
4k2 − 1

)
b
(
b2 − m2

)λ2

λ̃
+

(
2k − 1

){
2b3

(
b − 1

)

+ k
(
4k − 3

)
b2λ2 −

[
2b

(
b − 1

)
+ k

(
2k − 1

)
λ2

]
m2

}

+ 2kb
[(

4k − 3
)
b2 + k

(
k − 1

)(
2k − 3

)
λ2

− (
2k − 1

)
m2

]
λ̃ + 4k2

(
k − 1

)
b
(
b + 1

)
λ̃2, (43)

ζ ≡ 2
(
2k − 1

)
b
(
b − 1

)(
b2 − m2

)
+

(
12k2 − 6k − 1

)
b3λ̃ − (

2k − 1
)(

4k + 1
)
bm2λ̃

+ kb
(
12k2b − 14kb + 3b + 4k2 − 4k

)
λ̃2

− k
(
2k − 1

)2
m2λ̃2 + 2k2

(
k − 1

)(
2k − 3

)
bλ̃3. (44)

And βnznsm in equation (41) with the variational Gaus-
sian ground-state wave function simplifies to

βnznsm =[(
b2 + m2

)(
2k − 1

)
+ 2bλ2k2

][
ω̃2

nznsm

(∞) − (
b + λ2k

)]
bλ2k

[
b
(
4k−3

)
+2λ2k

(
k−1

)]
+

[
b3−(

b+λ2k
)
m2

](
2k−1

) .

(45)
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